Machine Learning & Algorithms

Chapter 1: Foundations of Machine Learning
  • What is Machine Learning & where it’s used

  • Types: Supervised, Unsupervised, Reinforcement

  • Real-world ML applications (industry case studies)

  • ML vs AI vs Data Science
    πŸ“Œ Outcome: Clear conceptual understanding

Chapter 2: Python for Machine Learning
  • Python basics for ML

  • NumPy, Pandas, Matplotlib, Seaborn

  • Data handling & preprocessing
    πŸ“Œ Mini Project: Data analysis on real dataset

Chapter 3: Mathematics for ML (Simplified & Practical)
  • Linear Algebra essentials

  • Probability & Statistics for ML

  • Cost functions & optimization intuition
    πŸ“Œ Focus: Concepts, not heavy math

Chapter 4: Data Preprocessing & Feature Engineering
  • Handling missing data

  • Encoding categorical data

  • Feature scaling & selection

  • Train-test split & pipelines
    πŸ“Œ Mini Project: Clean messy real-world data

Chapter 5: Supervised Learning – Regression Algorithms
  • Linear Regression

  • Polynomial Regression

  • Regularization (L1, L2)

  • Model evaluation metrics
    πŸ“Œ Project: House price prediction

Chapter 6: Supervised Learning – Classification Algorithms
  • Logistic Regression

  • KNN

  • Decision Trees

  • Naive Bayes

  • Confusion matrix, precision, recall
    πŸ“Œ Project: Spam or fraud detection

Chapter 7: Ensemble Learning & Advanced Algorithms
  • Random Forest

  • Gradient Boosting

  • XGBoost / LightGBM (intro)

  • Bias vs Variance tradeoff
    πŸ“Œ Project: High-accuracy prediction model

Chapter 8: Unsupervised Learning Algorithms
  • K-Means Clustering

  • Hierarchical Clustering

  • DBSCAN

  • Principal Component Analysis (PCA)
    πŸ“Œ Project: Customer segmentation

Chapter 9: Machine Learning Model Optimization
  • Hyperparameter tuning

  • Cross-validation

  • Overfitting & underfitting

  • Model deployment readiness
    πŸ“Œ Outcome: Production-ready mindset

Chapter 10: Introduction to Deep Learning
  • Neural network fundamentals

  • Perceptron & activation functions

  • TensorFlow / PyTorch basics

  • Simple ANN models
    πŸ“Œ Project: Handwritten digit recognition

Chapter 11: Real-World ML Projects & Case Studies
  • End-to-end ML pipeline

  • Business problem β†’ ML solution

  • ML for startups & enterprises

  • Resume-ready capstone project
    πŸ“Œ Outcome: Portfolio + confidence

**Chapter 12: Paid Internship Program (Internovate Exclusive)
  • Selection assessment & interview

  • Paid ML internship with real tasks

  • Live industry project work

  • Mentor feedback & evaluation

  • Internship certificate + experience letter
    πŸ“Œ Outcome: Real experience + income

Rs. 3999 Rs.1999

Duration: 3 months